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Standing waves on a string of a fixed length

•The displacement on the string at any point is given by

•With the boundary condition that y = 0 at x  = 0 and x = l at all times, thus

•The complete expression for the displacement of the nth harmonic is given by

•This may be expressed as

•Where the amplitude of nth mode is given by
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Normal mode condition
•Due to the second boundary condition: y = 0 at  x = l at all times, 𝑘𝑙 = 𝑛𝜋.

•This leads to 𝑙 = Τ𝑛𝜆
2 which is the condition for each normal mode of standing waves.

•The animation below shows the first four allowed mode shapes for a fixed-fixed string. The 
number of "humps" (antinodes) corresponds to the value of n.

3https://www.acs.psu.edu/drussell/Demos/Pluck-Fourier/Pluck-Fourier.html

l l l l



Energy of each normal modes of vibrating 
string

•The energy  in each harmonic is composed of kinetic and potential energy.

•Where  
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Standing Wave Ratio (SWR)
•If a progressive wave system is partially reflected from a boundary, the incident and 
reflected amplitudes partially cancel out.

•In this case the ratio of maximum to minimum amplitudes in the standing wave system 
is called 

•Where                         : the magnitude of the amplitude ratio;

•Since 

•SWR is always greater than or equal to unity and can be used to determine the sample’s 
reflection coefficient (r), its absorption coefficient () and its impedance (Z).
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Standing wave ratio and reflection 
coefficient

Incident wave is fully reflected out of phase at both ends, creating a (black) standing 
wave. r = −1, SWR = ∞

6https://en.wikipedia.org/wiki/Standing_wave_ratio

A1+B1 = 2 times amplitude

A1-B1 = 0

What is an application of SWR?

https://en.wikipedia.org/wiki/Standing_wave_ratio


Example 1
•Finding the superposition of given travelling waves on a string which is fixed at both ends.

•𝑦1 𝑥, 𝑡 = 𝐴 cos 𝜔𝑡 − 𝑘𝑥 and 𝑦2 𝑥, 𝑡 = 𝑟𝐴 cos 𝜔𝑡 + 𝑘𝑥 : where r is the coefficient of 
amplitude reflection.

•Note that the superposition of the travelling waves represents the displacement of a wave on the 
string.
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Solution
•By applying an appropriate trigonometric identity, the superposition is simply found to be 
𝑦 𝑥, 𝑡 = 𝐴 cos 𝜔𝑡 − 𝑘𝑥 + 𝑟𝐴 cos 𝜔𝑡 + 𝑘𝑥

= 𝐴cos𝜔𝑡 cos 𝑘𝑥 + 𝐴 sin𝜔𝑡 sin 𝑘𝑥 + 𝑟𝐴 cos𝜔𝑡 cos 𝑘𝑥 − 𝑟𝐴 sin𝜔𝑡 sin 𝑘𝑥

= 𝐴 1 + 𝑟 cos𝜔𝑡 cos 𝑘𝑥 + 𝐴 1 − 𝑟 sin𝜔𝑡 sin 𝑘𝑥

•This clearly shows that the displacement is actually the superposition of standing waves.
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Example 2

9https://www.youtube.com/watch?v=s5MBno0PZjE



Wave group
Superposition of two travelling waves of almost 
equal frequencies;

Superposition of amplitude and phase gives
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Since the envelope is a representation of the wave group and described by the 1st

cosine function, the velocity so called group velocity is defined as 
𝜔1−𝜔2

𝑘1−𝑘2
=

Δ𝜔

Δ𝑘

Vg= group velocity

Vp= phase velocity



Group velocity
Consider 2 cases which are the same phase velocities and different phase velocities.

(1) The two waves have the same phase velocities; i.e., 1/k1 = 2/k2 = c. This leads to

This suggests that the component frequencies and their superposition, or group will travel  

with the same velocity, the profile of their combination remaining constant. 
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http://physics.usask.ca/~hirose/ep225/animation/dispersion/anim-dispersion.html

This situation, i.e. vg = vp , is for non-dispersive waves. 

http://physics.usask.ca/~hirose/ep225/animation/dispersion/anim-dispersion.html


Revisit the superposition of two waves 
of almost equal frequencies  

•The superposition produces an amplitude which 
varies between 2a and 0.

•This situation is called complete or 100% 
modulation.

•The high frequency wave is amplitude modulated.

•This actually is an example of sent signal found in a 
communication technique  for transmitting 
information.
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Amplitude Modulation (AM)

•A general expression of an amplitude modulated wave is 
given as

•Where the modulated amplitude

•

•This gives  

•Two new frequencies               (sidebands)  are introduced.
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(2) Two frequencies components have different phase velocities so that 1/k1  2/k2.

The group velocity is given as 

• The superposition of the two waves will no longer remain constant and the group profile 
will change with time.

• If a group contains a number of components of frequencies which are nearly equal, the 
original expression for the group velocity is written
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Dispersion relation
•A medium at which the phase velocity is frequency dependent (/k not constant) is known as a 
dispersive medium and a dispersion relation expresses the variation of  as a function of k.

•This leads to three possible changes with time of the group velocity profile relative to the 
phase velocity.

•They include

(1)  vg = vp : a non-dispersive relation

(2) vg < vp : a normal dispersion relation

(3) vg > vp : an anomalous dispersion relation
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Example 3
•Draw a dispersion relation of  electromagnetic waves in vacuum.
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Solution

• The dispersion relation represents the relation between  and k of waves.

• For an electromagnetic wave :  = kc; where c = is the speed of light in vacuum.

• This give Τ𝑑𝜔
𝑑𝑘 = 𝑐 which is constant. This suggests the following graphical representation of 

the dispersion relation.

k





Illustration of dispersion relation
•Since  = kv; v = phase velocity
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= Slope of dispersion relation



The dependence of refractive index to 
wavelength for various glasses

•Are these various types of 
glasses non dispersive, normal 
dispersive or anomalous 
dispersive?

18http://microscopy.berkeley.edu/courses/tlm/optics/chromatic.html

These are dispersive media because the phase 
velocity of each wavelength is not equal. This can be 
seen from the wavelength dependent refractive 
index.
Also, longer wavelengths move faster than shorter 
wavelength. This dispersive medium is categorized as 
the normal dispersive medium.



Example 4
•It was found previously that the relative permittivity of an ionized gas is given by

•This indicates that the relative permittivity is a function  of frequency.

•Show that the dispersion relation is given as
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The dispersion 
relation for EM waves 
in a plasma

•What happens when 
𝜔

𝜔𝑝
< 1?

20https://physics.stackexchange.com/questions/366858/what-is-the-physics-behind-the-plasma-frequency

Solution:

EM waves with  frequencies   less 

than p are attenuated as they

propagate through a medium.



Additional explanation
•Recall

•This actually relates to the refractive index of a medium as 𝑛 = 𝜀𝑟.

•Once  
𝜔

𝜔𝑝
< 1, the refractive index n becomes imaginary; i.e., 𝑛 = 𝑖𝜅.

•Generally, the wave propagates in a medium is given as 𝐸 = 𝐸0𝑒
𝑖 𝑘𝑥−𝜔𝑡 and the wave number k can 

be written k0n.

•Because a general form of a refractive index is given by n = N + 𝑖𝜅, the wave propagating inside the 
medium becomes  
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This terms give rise to the attenuation of the amplitude as a function of the propagating distance.



Transverse waves in a periodic structures
representing a 1D crystal structure with identical 
single atom separated by a crystal lattice a

•Consider the propagation of  transverse waves along a linear array of atoms, mass m, in a 
crystal lattice where the tension T represents the elastic force between the atoms and a is the 
separation between atoms (so that T/a is the stiffness). 

•The displacement of rth particle due to the transverse waves is given as

•By substituting the displacement into the equation of motion :

•The permitted frequencies are found to be
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An alternative way to derive the equation of motion 
in case of the one dimensional lattice vibration

•For simplicity, the forces between the atoms in a one-dimensional crystal lattice is assumed to be proportional to 
relative displacements from the equilibrium positions.

•Equation of motion for rth mass:

• Due to the stiffness C = T/a; therefore 

23https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2005_Lattice_Vibrations.pdf
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What is the permitted frequency?
•The expression for 2 is equivalent to jth normal mode frequency of a transverse wave 
on loaded string,

•If                                     (Show this?)

•Therefore, the permitted frequency is actually the normal mode frequency of the 
transverse wave existing in the linear array of atoms in a periodic structure.
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Show 
•Recall (n+1)a = the length of the string or crystal, therefore

•Also, the allowed wavelengths have to satisfy with                   ; where p is an integer.  

•Thus, 

•Because j and p are integers and they can be equal ( j = p) to indicate a particular 
normal mode of interest. Provided that k = 2/, we then can conclude that
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• The maximum permitted frequency is found to be

• This gives ka =  →  =2a which is the allowed minimum wavelength for the 

transverse wave to propagate along the linear array of atoms in a periodic structure. 

• The graph below shows the dispersion relation ( vs k)  for the linear array atoms.

• Due to                                       , the permitted frequency is then represented as

𝜔2 =
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2 24
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Note that the 

repetition values of 

 beyond the region 

-/a k /a, this 

region defines a 

Brillouin zone.

1st Brillouin zone

The frequency and the 

displacement of the 

atoms do not change 

when k is greater than 

the 1st Brillouin zone.



•For long wavelengths or low values of the wave number k, sin ka/2 → ka/2

•For short wavelengths, the phase velocity is given by

•Note : only at very short wavelengths does the atomic spacing of the crystal 
structure affect the speed of the wave propagation.
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Dispersion relation for travelling long and short 
wavelength waves in a periodic structure 
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Dispersion relation for travelling 
waves in a periodic structure

•Recall the dispersion relation:

•The maximum permitted frequency is obtained when

•Example : the elastic force constant T/a for a crystal is 
about 15 Nm-1 and a typical reduced atomic mass is 
about 60 x 10-27 kg. The maximum frequency is 
found to be  about  5 x 1012 Hz.
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Linear array of two kinds of atoms in 
an ionic crystal

•In this case, a one dimensional line which contains two kinds of atoms with separation a is 
considered.

•Given that atoms of mass M occupying the odd numbered positions and those of mass    
m occupying the even numbered positioned, the equation of motion for each type are

•With solutions

•This gives the dispersion relation as
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An alternative way to derive the equation of motion in 
case of the diatomic one dimensional lattice vibration

•For simplicity, the forces between the atoms in a one-dimensional diatomic crystal lattice is assumed to be 
proportional to relative displacements from the equilibrium positions.

•Equation of motion for 2rth mass:

•Equation of motion for (2r+1)th mass :

• Due to the stiffness C = T/a; therefore 

30https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2005_Lattice_Vibrations.pdf
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Derivation of the dispersion relation
•From the equations of motion found earlier,

•By arranging the above equations in the following matrix form, the dispersion 
relation can be worked out.
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Dispersion relation for the ionic 
crystal structure

•Provided that m > M.

•Notice that the dispersion relation gives two possible situations. 

•With the positive sign, the change of  as a function of k is considered.

•The range of the wave number covers from k = 0 to kmax = /2a (minimum  = 4a)

For   k = 0  

For   kmax
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minimum wavelength corresponds to 4a

instead of 2a as found in the case of 

vibration in monatomic crystal structure).



Dispersion relation for the ionic 
crystal structure

•Provided that m > M.

•Notice that the dispersion relation gives two possible situations. 

•With the negative sign, the change of  as a function of k is considered.

•The range of the wave number covers from k = 0 to kmax = /2a (minimum  = 4a)

For   k = 0                            ;   For    small k

For   kmax
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Dispersion relation for two modes of 
transverse oscillation in a crystal structure

•According to the dispersion relation, two 
possible solutions can be found for m > M.

•They are optical mode (upper branch) and 
acoustic mode (lower branch).

•Also there is a forbidden band (band gap) 
of frequencies between the two branches 
that the wave cannot propagate.

•The band gap depends on the differences 
of masses.
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The motions of the two types of atom for 
each branch at k → 0 (long wavelength)
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Optical mode for long wavelength and small k, Am/AM = -M/m

The atoms vibrate against each other, the center of mass of the

unit cell in the crystal remains fixed.

Acoustic mode for long wavelength and small k, Am =AM

http://slideplayer.com/slide/9413111/

Atoms and their center of mass move together.



Derivation of the motions of the two 
types of atom for each branch
•Recall the equation of motion for the ionic crystal structure previously discussed,

•The relative motion between m and M with a small k can be found when suitable 
frequency for each branch is considered.
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Optical branch

•Using one of the two equations 
from the matrix

•For    k = 0  →

•The relative motion is found to 
be

Acoustic branch

•Using one of the two equations from 
the matrix

•For       k = 0   →

•The relative motion is found to be
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Example 5
Absorption of infrared radiation by ionic crystal

•Suppose the ionic crystals composed of ions of opposite charges e move under 
the influence of the electric field E = E0exp(it).

•The equations of motion can be written as

•Appropriate displacement for each ion is given as follows
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• However, the analysis can be simplified by neglecting the wave number k if we 

consider the situation at a longer wavelength. 

• Assuming that the electric field is infrared and its wavelength is around 10-4 m.

• This gives the wave number k  6104 m-1. This value is negligible when comparing 

to the km which is the limit of wave number at the boundary of 1st Brillouin zone. 

Approximately, km is found to be /2a where a = 10-10 m.

• Under the assumption, this can simplify the equations of motion for each ion to be
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• The amplitudes for both ions are found to be

• Where 

• When =0, the ions amplitude increases meaning  a strong absorption by ionic 

crystals
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This actually is the low k limit of 

the optical branch.



Homework #6
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