Transverse Wave Motion
part 2
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Standing waves on a string of a fixed length

y = aei(a)t—kx) _l_bei(a)t+kx)

*The displacement on the string at any point is given by
*With the boundary condition thaty = 0 at x =0 and x = | at all times, thus

Y = (—2i)aei(“’t) sin kx
*The complete expression for the displacement of the nth harmonic is given by
W X

Yn = 2a(—i)(coswpt +isinw,t)sin

natural frequency of
the n™ normal mode
and given as nmc/L

C
: i . W X NOTE o, is the
“This may be expressed as Yn = (A, C0S@,t + B, sin @,t)sin -

2
*Where the amplitude of nth mode is given by (A + By )'? =2a



Normal mode condition

*Due to the second boundary condition: y =0 at x = | at all times, kl = nm.

*This leads to | = ™/, which is the condition for each normal mode of standing waves.

*The animation below shows the first four allowed mode shapes for a fixed-fixed string. The
number of "humps" (antinodes) corresponds to the value of n.
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Energy of each normal modes of vibrating
string

*The energy in each harmonic is composed of kinetic and potential energy.

E,, (kinetic + potential ) = E,, (kinetic) + E,, ( potential )
| | 2
I S R SR Ny Y i)'
_E-c[py”dx+§T-([(_6>? j dx

=2 plof (A2 +82)
= 2mo? (A2 +87)

. . WX
Yn = (A, cosapt + B, sinm,t)sin “h
C

*Where




Standing Wave Ratio (SWR)

*If a progressive wave system is partially reflected from a boundary, the incident and
reflected amplitudes partially cancel out.

*In this case the ratio of maximum to minimum amplitudes in the standing wave system
Is called

Standina Wave Ratio (SWR) — |A1| +|Bl| _ 1+|I‘| NOTE : A, = incident amplitude
. |A1| _ | Bl| 1_|r| B, = reflected amplitude

‘Where |r|=|B;/A)| : the magnitude of the amplitude ratio;

*Since 0<|r|<1 therefore 1<SWR <o

*SWR is always greater than or equal to unity and can be used to determine the sample’s
reflection coefficient (r), its absorption coefficient (o) and its impedance (2).



Standing wave ratio and reflection
coefficient

A,+B; = 2 times amplitude N~

Incident wave is fully reflected out of phase at both ends, creating a (black) standing
wave. r=—1, SWR =«

What is an application of SWR?


https://en.wikipedia.org/wiki/Standing_wave_ratio

Example 1

*Finding the superposition of given travelling waves on a string which is fixed at both ends.

*y1(x,t) = Acos(wt — kx) and y,(x,t) = rA cos(wt + kx) : where r is the coefficient of
amplitude reflection.

*Note that the superposition of the travelling waves represents the displacement of a wave on the
string.




Solution

By applying an appropriate trigonometric identity, the superposition is simply found to be
y(x,t) = Acos(wt — kx)+ rA cos(wt + kx)

= A cos wt cos kx + A sin wt sin kx + rA cos wt cos kx — rA sin wt sin kx

= A(1+ 1) coswtcoskx + A(1 — r) sin wt sin kx
N " ~ N —
Sﬁmc‘.v\ S Yo iw -

Wa w£ WAV

*This clearly shows that the displacement is actually the superposition of standing waves.



Example 2

Frequency=1GHz - t=0T sec (I'=-05 t=05)
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Superposition of two travelling waves of almost

Wave g rou p equal frequencies;

y; =acos(at—k;x), y, =acos(w,t —k,x)

Envelope of Superposition of amplitude and phase gives
frequency ©®1— 2 —
/ ? \/ = group velocity y=h I’—I_'y'z """""""" |
— t (ki—ko)x |
2 | =2ac0s (@)t _(k—ke)x ||
i | 2 :
. L e e e e e e e e e e e e e e
ns
I| | t k k X
ll. B _ —Xx COS (C()_|_+a)2) _( 17T 2)
V= phase velocity 2 2

Oscillation of

frequency @1+, Since the envelope is a representation of the wave group and described by the 1st

2 . . . . : W1—w A
cosine function, the velocity so called group velocity is defined as kl . 2 = A‘I‘:
1= 12




Group velocity

Consider 2 cases which are the same phase velocities and different phase velocities.

(1) The two waves have the same phase velocities; i.e., o,/k; = o,/k, = c. This leads to

- ki — K
group velocity :Aa) _ O @ =c( 1 2)
Ak kl_kZ kl_kz

=C

This suggests that the component frequencies and their superposition, or group will travel

with the same velocity, the profile of their combination remaining constant.

1% /\ /\ A /\ /\ This situation, i.e. Wy = W Is for non-dispersive waves.
D""r'ﬁ“' e



http://physics.usask.ca/~hirose/ep225/animation/dispersion/anim-dispersion.html

Revisit the superposition of two waves
of almost equal frequencies

Envelope of *The superposition produces an amplitude which

frequency m1;m2 varies between 2a and O.

*This situation is called complete or 100%
22 modulation.

*The high frequency wave is amplitude modulated.

*This actually i1s an example of sent signal found in a
7 communication technique for transmitting
Oscillation of information.

frequency ©@4+ 1y
2




Amplitude Modulation (AM)

MODULATED
SIGNAL

MODULATING
SIGNAL
AMPLITUDE
MODULATOR W
*A general expression of an amplitude modulated wave is

TN s
givenas y = Acos(mt—kx)

CO/
*Where the modulated amplitude A=a+bcoswo't

CARRIER
®
iy Francssco Buffs
- w>0
" | *This gives
o Carrier
E Lower A Upper y — a COS (a)t - kX)
E. sideband b
= 4 /
+§{[cos(a)+ @' )t—kx |+| cos(w— ')t - kx]}
*Two new frequencies @ =+ @' (sidebands) are introduced.

=

sideband
0-0’ [ 0 T(D+(D'
"~ Bandwidth Frequency
https://dsp.stackexchange.com/questions/47604/when-listening-in-to-an-am-signals-of-
various-freiuencies-how-do-we-exactli-tun


https://giphy.com/gifs/analog-BzYOp24AXnHEI
https://dsp.stackexchange.com/questions/47604/when-listening-in-to-an-am-signals-of-various-frequencies-how-do-we-exactly-tun

Group velocity (contd.)

(2) Two frequencies components have different phase velocities so that m,/k; # w,/K,.
The group velocity is given as

o—wW, Aw

ki —k, Ak

This situation, i.e. vy # v, , Is for dispersive waves.

 The superposition of the two waves will no longer remain constant and the group profile
will change with time.

* If a group contains a number of components of frequencies which are nearly equal, the
original expression for the group velocity is written

Ao do
Vg = =
Ak dk




Dispersion relation

A medium at which the phase velocity is frequency dependent (w/k not constant) is known as a
dispersive medium and a dispersion relation expresses the variation of o as a function of k.

This leads to three possible changes with time of the group velocity profile relative to the
phase velocity.

wave packet with vg=Vvp wave packet with Vg=Vvp

*They include

0 | 08 |
= v, : a non-dispersive relat ;| ¢ |
(1) v, =V, :anon-dispersive relation 04 o
. . : 0 0
(2) v, <V, : a normal dispersion relation 02 | 02 |
06 06 |
(3) vy > v, : an anomalous dispersion relation 71 | 08 |

5 10 15 20 5 10 15 20

]
]

http://theory.ipp.ac.cn/~yj/free_software.html



Example 3

*Draw a dispersion relation of electromagnetic waves in vacuum.




Illustration of dispersion relation

V, >V anomalous *Since o = kv; v = phase velocity
dispersion
do d dv
(@) v, =V  no dispersion Vg = dk = &(kV) V+ k L
dv
o (K) =\V-A <
gradient (b) Vg <V normal d4 This term can be
. o
V=% doo _ dspeman either positive
Ya=35x = Slope of dispersion relation or negative.
V=2
gradient
K AT v T v, <v(normal dispersion)

AT v v >v (anomalous dispersion)




The dependence of refractive index to
wavelength for various glasses

19
whcmum dense flimt LaSFY
18—
=
5 Dense flint SF10
1.7
2
s
2 Fline F2
cé 1.6 mir.
= Barium crown Bak4
("4
\ Borosilicate crown BK7
1.5 -
Fluorite crown FRK3 1A
14 T T T T T T
0.2 0.4 0.6 08 1.0 1.2 14

Wavelength A (um)

1.6

*Are these various types of
glasses non dispersive, normal

dispersive or anomalous
dispersive?



Example 4

*It was found previously that the relative permittivity of an ionized gas is given by

oz wp\?
& = 2= 1-— (Z) ;wy, = plasma frequency

*This indicates that the relative permittivity is a function of frequency.

-Show that the dispersion relation is given as w? = wp + c*k?
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The dispersion
relation for EM waves
In a plasma

What happens when wﬂ < 1?
p




Additional explanation

c? wp\?
*Recall & =3 = 1- (X)

*This actually relates to the refractive index of a medium as n = /¢,

*Once wﬂ < 1, the refractive index n becomes imaginary; i.e., n = ik.
p

-Generally, the wave propagates in a medium is given as E = E,e!*~®t) and the wave number k can
be written kgn.

*Because a general form of a refractive index is given by n = N + ik, the wave propagating inside the
medium becomes

E = Eoei(kx—a)t) — EO oKX ei(koNx—wt)

I

This terms give rise to the attenuation of the amplitude as a function of the propagating distance.



Transverse waves in a periodic structures
representing a 1D crystal structure with identical
single atom separated by a crystal lattice a

*Consider the propagation of transverse waves along a linear array of atoms, mass m, in a
crystal lattice where the tension T represents the elastic force between the atoms and a is the
separation between atoms (so that T/a is the stiffness).

*The displacement of rth particle due to the transverse waves Is given as

Y, = Arei(a)t—kx) _ Arei(a)t—kra)
By substituting the displacement into the equation of motion: my, = g(yr T+ Y1 —2Y, )
*The permitted frequencies are found to be

> 4T . , ka | Thisactually is the dispersion relation for waves
@ =——SIN" — |travelling along a linear one dimensional array
ma 2 | of atoms in a periodic structure.




An alternative way to derive the equation of motion
IN case of the one dimensional lattice vibration

*For simplicity, the forces between the atoms in a one-dimensional crystal lattice is assumed to be proportional to
relative displacements from the equilibrium positions.

—l =)

yr-l yr yr+i

L

r-1 r r+1 a

Equation of motion for rth mass: my, =—C (Yr — yr_l) —-C (yr - yr+1)
=C ( Yrra T ¥Yraa— 2yr )

* Due to the stiffness C = T/a; therefore myr = — ( Yerrt Yrq— 2yr )
a


https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2005_Lattice_Vibrations.pdf

What iIs the permitted frequency?

*The expression for ? is equivalent to jth normal mode frequency of a transverse wave
on loaded string,

] . ’ -
a)Z ZZ—T(].—COSJ—EJ:ﬂSinZ 7 :a)Z :ﬂsmzﬁ _ Permitted

I ma n+1) ma 2(n+1) ma 2 frequency
gf Re__7 (Show this?)
2 2(n +1)

*Therefore, the permitted frequency is actually the normal mode frequency of the
transverse wave existing in the linear array of atoms in a periodic structure.



ka IW
ShOW 2 _2(n+1) < | R

*Recall (n+1)a = the length of the string or crystal, therefore ka _ jra  _ jza

2 2(n+l)a 2

*Also, the allowed wavelengths have to satisfy with b4 —| ; where pis an integer.
2

ka jra 2)ra Jrma
*Thus, = = =—
2 2(n+l)a 2piA p4

*Because j and p are integers and they can be equal ( j = p) to indicate a particular

normal mode of interest. Provided that k = 2n/A, we then can conclude that ka i

2 2(n+1)




, AT

The maximum permitted frequency Is found to be «® =-_—

This gives ka =t — A =2a which is the allowed minimum wavelength for the
transverse wave to propagate along the linear array of atoms in a periodic structure.
The graph below shows the dispersion relation (o vs k) for the linear array atoms.

AT . o ka
Dueto @ °=—sin’— | the permitted frequency is then represented as

ma _ _ 2

ka
Sin —
2

Note that the
repetition values of
o beyond the region
-n/a< k <m/a, this
region defines a
Brillouin zone.

The frequency and the
dlsplacement of the
atoms do not. change
when K is greater ‘than
the 15t Brillouin; zone

|,
!

> k

W
'.'\.
& _— _— L] _— L] _— _— il _—

—2n/a




Dispersion relation for travelling long and short
wavelength waves Iin a periodic structure

*For long wavelengths or low values of the wave number Kk, sin ka/2 = ka/2
) AT k%a’
ma 4
2 _ o’ _Ta_ T <=mmmm \\ave velocity
k> m p
*For short wavelengths, the phase velocity is given by
® sinka/2
V=—=0C
ka/2

*Note : only at very short wavelengths does the atomic spacing of the crystal
structure affect the speed of the wave propagation.

Q

S.C




Dispersion relation for travelling
waves In a periodic structure

. . . /4T . ka
*Recall the dispersion relation: @ =,[—SIn fa
® ma 2

/ Permitted frequency

) *The maximum permitted frequency is obtained when

k=7x/a and A=2a

*Example : the elastic force constant T/a for a crystal is
about 15 Nm-* and a typical reduced atomic mass is
about 60 x 10%" kg. The maximum frequency is

k found to be about 5 x 102 Hz.

The maximum frequency is known as CUT OFF frequency.



Linear array of two kinds of atoms In
an lonic crystal

°In this case, a one dimensional line which contains two kinds of atoms with separation a is
considered.

*Glven that atoms of mass M occupying the odd numbered positions and those of mass
m occupying the even numbered positioned, the equation of motion for each type are

N T 5 T
mys, = g(y2r+1 +Yora— 2)’2r) My = E(Y2r+2 + Yor — 2)’2r+1)

2r+1)ka)

*With solutions Yor = Amei(“’t_zrka) and Yo, = Ay ei(‘“‘(
*This gives the dispersion relation as {(

1
£+ij2_4sin2ka 2
mM




An alternative way to derive the equation of motion In
case of the diatomic one dimensional lattice vibration

*For simplicity, the forces between the atoms in a one-dimensional diatomic crystal lattice is assumed to be
proportional to relative displacements from the equilibrium positions.

—p — — —lp
Yora Yor  Yors1 Yorer M m
-\ N- OV OAWA- @A O
2r-1 2r  2r+1 2r+2 a

*Equation of motion for 2rth mass: MYy = =C(Yar = Yar—1 ) =C(Yar = Yars1) = C (Yarsa + Yor —2Yar)
*Equation of motion for (2r+1)th mass : Myr,1 =~C(Y2r.1 = Yar ) =C(Y2rsaa = Yar2) = C(Yar + Yors2 = 2Yoru)

- Due to the stiffness C = T/a: therefore 22r = E(y2f+1 +Yar1=2Yar)

.. T
MYy = g()’m + Yors2 —2Yor41)


https://unlcms.unl.edu/cas/physics/tsymbal/teaching/SSP-927/Section%2005_Lattice_Vibrations.pdf

Derivation of the dispersion relation

*From the equations of motion found earlier,

P mAm TAvw ( —|ka+eika)_2T:&n
— MAM _ﬁ( —ika e'ka)—ZTaAM

By arranging the above equations in the following matrix form, the dispersion
relation can be worked out.

_Z—T—a)zm _2T oska

a a Am}:
—2—Tcoska 2_T_w M Au
| a a |



Dispersion relation for the i1onic
crystal structure 2 g2 ]2
! i

a mM

*Provided that m > M.
*Notice that the dispersion relation gives two possible situations.
*With the positive sign, the change of » as a function of k is considered.

*The range of the wave number covers from k =0 to k.. = m/2a (minimum A = 4a)

maxX

For k=0 _>a)2:2T(1+1j I
a\m M Note : o, is obtained when the
minimum wavelength corresponds to 4a
Instead of 2a as found in the case of

Al vibration in monatomic crystal structure).
aM

For K. > o



Dispersion relation for the i1onic
crystal structure T(l . ﬂl 1)”‘““2“"‘};

0 =—| —+— —+—
alm M m M mM

*Provided that m > M.

*Notice that the dispersion relation gives two possible situations.

*With the negative sign, the change of w as a function of k is considered.

The range of the wave number covers from k = 0 to k., = ©/2a (minimum A = 4a)

2 2Tk28.2
For k=0 —>w=0: For smallk —> W =
a(M +m)
2T
For K., Sl =""
am



Dispersion relation for two modes of
transverse oscillation in a crystal structure

o Ont *According to the dispersion relation, two
ptical branch | - .
1 ——--\| 1 possible solutions can be found for m > M.
W (2T\2 _
[ﬂ (% 7 } Band én]»; ) *They are optical mode (upper branch) and
e S acoustic mode (lower branch).

* Also there is a forbidden band (band gap)
of frequencies between the two branches
that the wave cannot propagate.

m>M

Acoustical
branch

*The band gap depends on the differences
l of masses.

(£+ij2_4sin2ka 2
m M mM




The motions of the two types of atom for
each branch at k —» 0 (long wavelength)

.® Optical mode for long wavelength and small k, A /A,, = -M/m
e o0 ° The atoms vibrate against each other, the center of mass of the
unit cell in the crystal remains fixed.
O o & o ) ®
© 9o ®° ® o Acoustic mode for long wavelength and small k, A=A,

Atoms and their center of mass move together.

http://slideplayer.com/slide/9413111/



Derivation of the motions of the two
types of atom for each branch

*Recall the equation of motion for the ionic crystal structure previously discussed,

2T 2 2T
——ow°M ———coska
a a {Am}zo
—Z—Tcoska 2—T—a)ZM Au
a a i

*The relative motion between m and M with a small k can be found when suitable
frequency for each branch is considered.



Optical branch

FUsIng one of the two equations
from the matrix

Acoustic branch

I’Using one of the two equations from
the matrix

(Z?T—mwszm — Ay 2?Tcoskazo

PFor k=0 —» @?-=

2T(1 1
_|_
alm M

P The relative motion is found to
be

J

(Z?T—mwszm — Ay 2?Tcoskazo

FFor k=0 > #%=0

 The relative motion is found to be




Example 5
Absorption of infrared radiation by ionic crystal

*Suppose the ionic crystals composed of ions of opposite charges e move under
the influence of the electric field E = Eexp(iwt).

*The equations of motion can be written as

my,, = I(y2r+1 + Yor_1 — 2Y,, ) —€E; for negative ion
a

. T e
My, .1 = g(er + Yors2 —2Yor4 ) +€E; for positive ion

*Appropriate displacement for each ion is given as follows

Yor = Amei(aﬁ_zrka) and  Yoryg = Ay el *

2r+1)ka)



« However, the analysis can be simplified by neglecting the wave number k if we
consider the situation at a longer wavelength.

« Assuming that the electric field is infrared and its wavelength is around 104 m.
 This gives the wave number k ~ 6x10* m-L. This value is negligible when comparing
to the k., which is the limit of wave number at the boundary of 15t Brillouin zone.

Approximately, k. is found to be w/2a where a = 10-1° m.
 Under the assumption, this can simplify the equations of motion for each ion to be

2T

~o"mA, =~ (Av —An)—eEo
~0MAy == (Ay - Ay ) +eEg

R




« The amplitudes for both ions are found to be

—eE,

An = m(wg —a)z)
_ eEg
M M (a)g —0)2)
.« Where L2o2rl 1 = This actually is the low k limit of
°alm M the optical branch.

* When o=, the ions amplitude increases meaning a strong absorption by ionic
crystals

R




Homework #6

Problem 5.16

- The dielectric constant of a gas at a wavelength A is given by

c? B 5
where A, B and D are constants, ¢ 1s the velocity of light in free space and v 1s its phase velocity. If
the group velocity is V, show that

Ve, = v(A — 2DA\?)

Problem 5.25

An aircraft flying on a level course transmits a signal of 3 x 10° Hz which is reflected from a distant
point ahead on the flight path and received by the aircraft with a frequency difference of 15 kHz.
What 1s the aircraft speed?

Problem 5.26

Light from hot sodium atoms is centred about a wavelength of 6 x 10~7 m but spreads 2 x 1072 m
on either side of this wavelength due to the Doppler effect as radiating atoms move towards and
away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature
is ~ 900 K.

“



